DLA **Evaluation Report** proficiency test Dienstleistung Lebensmittel DLA 47/2016 Analytik GbR Food Supplement I: Vitamins A, D3, E, K1 and beta-Carotene in Multi Vitamin Capsule Powder Dienstleistung Lebensmittel Analytik GbR Waldemar-Bonsels-Weg 170 22926 Ahrensburg, Germany proficiency-testing@dla-lvu.de www.dla-lvu.de Coordinator of this PT: Dr. Matthias Besler

> Reprint, also in part, only with written permission from DLA-Ahrensburg Page 1 of 44

Inhalt / Content

1.	Introduction
2.	Realisation
	<pre>2.2 Sample shipment and information to the test</pre>
3.	Evaluation
	3.3 Repeatability standard deviation
	3.5 Exclusion of results and outliers
	3.6.2 Value by precision experiment
	3.7.1 Warning and action signals
	3.9 Reproducibility coefficient of variation (CVR)
4.	Results
	 4.2 Vitamin D3 (as Cholecalciferol in μg / 100 g)
5.	4.5 beta-Carotene (in mg / 100 g)27 Documentation
	5.1 Primary data
6.	Index of participant laboratories
7.	Index of references

1. Introduction

The participation in proficiency testing schemes is an essential element of the quality-management-system of every laboratory testing food and feed, cosmetics and food contact materials. The implementation of proficiency tests enables the participating laboratories to prove their own analytical competence under realistic conditions. At the same time they receive valuable data regarding the verification and/or validation of the particular testing method [1, 5].

The purpose of DLA is to offer proficiency tests for selected parameters in concentrations with practical relevance.

Realisation and evaluation of the present proficiency test follows the technical requirements of DIN EN ISO/IEC 17043 (2010) and DIN ISO 13528:2009 / ISO 13528:2015 [2, 3].

2. Realisation

2.1 Test material

The test material is a mixture of two common in commerce food supplements "multi vitamin capsules" and lactose as bulking agent from European Suppliers. The first food supplement was crushed including the capsule shells, while the second food supplement was added without capsule shells. The materials were sieved, mixed and homogenized. Afterwards the samples were portioned to approximately 25 g into metallised PET film bags and chronologically numbered.

The composition (list of ingredients) and the amounts of vitamins were calculated according to the labelled values as given in table 1 and table 2 respectively.

Table 1: Composition of DLA-Samples

Multi vitamin capsules

<u>Ingredients including capsule shell</u> (1. food supplement): Dicalcium phosphate, magnesium oxide, gelatin, vitamin C, potassium chloride, niacin, magnesium stearate, vitamin E acetate, calcium D-pantothenate, ferrous sulfate, zinc oxide, vitamin B6 hydrochloride, copper sulfate, vitamin B2, vitamin B1 mononitrate, vitamin A acetate, folic acid, biotin, potassium iodide, chromium-III-chloride, sodium molybdate, sodium selenite, vitamin K1, vitamin D3, vitamin B12.

<u>Ingredients without capsule shell</u> (2. food supplement): Bulking agent lactose, vitamin C, nicotinamide, vitamin E acetate, calcium Dpantothenate, vitamin B6, vitamin B2, vitamin B1, separating agent: magnesium stearate, silica, beta-carotene, biotin, folic acid, vitamin B12.

<u>additional ingredient:</u> Lactose Table 2: Calculated amounts according to labelled values of vitamins

Vitamin	Content	per	100 g	
Vitamin A	23000	μg		
Vitamin D3	87	μg		
Vitamin E	980	mg		
Vitamin K1	870	μg		
beta-Carotene	39	mg		

2.1.1 Homogeneity

The homogeneity of bottled numbered DLA-samples was checked by 8fold determination of niacin by HPLC-UV. The repeatability standard deviation of 0,8 % is below the range of the repeatability standard deviations of method EN 15652:2009 for determination of niacin, which are in the range of 1,1% to 5,6% [21]. The results of the homogeneity test are given in the documentation.

The calculation of the **repeatability standard deviation** S_r of the participants was also used as an indicator of homogeneity. It is < 5,0% (1,78% - 4,65%) for all analytes. Therefore these repeatability standard deviations are similar to precision data of the referring standardized methods (e.g. ASU §64 L 00.00-86, s. 3.6.2) (see Tab. 3) [16-20]. The repeatability standard deviations of the participants' results are given in the tables of statistic data (see 4.1 to 4.20).

Furthermore, the homogeneity was characterized by the **trend line function** of participants' results for chronological bottled single samples. The maximum deviations from the mean value of the trend lines for vitamin A and vitamin E were below 30% of the target standard deviations σ_{pt} , and σ_{pt} , respectively (s. 5.2 homogeneity) and can therefore be regarded as low.

If the criteria for sufficient homogeneity of the test material are not fulfilled on a particular parameter, the impact on the target standard deviation is checked and optionally the evaluation of the results of the participants will be done using the z'-score considering the standard uncertainty of the assigned value (see 3.8 and 3.11) [3].

2.2 Sample shipment and information to the test

Two portions of test material were sent to every participating laboratory in the 24^{th} week of 2016. The testing method was optional. The tests should be finished at 12^{th} August 2016 the latest.

With the cover letter along with the sample shipment the following information was given to participants:

The two identical samples are powdered multivitamin capsules including capsule shells (gelatin) containing Vitamins A, D3, E, K1 and betacarotene. The recommendation is to take 3 g per day. Each sample bag contains 50 g. The samples contain vitamins in the form of approved food supplements nutrient compounds. The material was tested for homogeneity and is intended for laboratory use only. The methods for determination are optional (e.g. HPLC, ELISA).

In general we recommend to homogenize a representative sample amount before analysis according to good laboratory practice, especially in case of low sample weights.

2.3 Submission of results

The participants submitted their results in standard forms, which have been handed out with the samples (by email).

The finally calculated concentrations of the parameter as average of duplicate determinations of both numbered samples were used for the statistical evaluation. For the calculation of the repeatability- and reproducibility standard deviation the single values of the double determination were used.

Queried and documented were single results, recovery and the used testing methods.

In case participants submitted several results for the same parameter obtained by different methods these results were evaluated with the same evaluation number with a letter as a suffix and indication of the related method.

From the 11 participants one participant submitted the results delayed in consultation with DLA. All other participants submitted the result in time.

3. Evaluation

3.1 Consensus value from participants (assigned value)

The robust mean of the submitted results was used as assigned value (X_{pt}) ("consensus value from participants") providing a normal distribution. The calculation was done according to algorithm A as described in annex C of ISO 13528 [3].

The condition is that the majority of the participants' results show a normal distribution or are distributed unimodal and symmetrically. To this end, an examination of the distribution is carried out, inter alia, using the kernel density estimate [3, 12].

In case there are indications for sources of higher variability such as a bimodal distribution of results, a cause analysis is performed. Frequently different analytical methods may cause an anomaly in results' distribution. If this is the case, separate evaluations with own assigned values (X_{pti}) are made whenever possible.

The statistical evaluation is carried out for all the parameters for a minimum of 7 values are present.

The actual measurement results will be drafted. Individual results, which are outside the specified measurement range of the participating laboratory (for example with the result > 25 mg/kg or < 2,5 mg/kg) or the indicating "0" will not be considered for the statistic evaluation [3].

3.2 Robust standard deviation

For comparison to the target standard deviation σ_{pt} (standard deviation for proficiency assessment) a robust standard deviation (S^x) was calculated. The calculation was done according to algorithm A as described in annex C of ISO 13528 [3].

3.3 Repeatability standard deviation

The repeatability standard deviation Sr is based on the laboratory's standard deviation of (outlier free) individual participant results, each under repeatability conditions, that means analyses was performed on the same sample by the same operator using the same equipment in the same laboratory within a short time. It characterizes the mean deviation of the results within the laboratories [3] and is used by DLA as an indication of the homogeneity of the sample material.

In case single results from participants are available the calculation of the repeatability standard deviation Sr, also known as standard deviation within laboratories Sw, is performed by: [3, 4].

The relative repeatability standard deviation as a percentage of the mean value is indicated as coefficient of variation CV_r in the table of statistical characteristics in the results section in case single results from participants are available.

3.4 Reproducibility standard deviation

The reproducibility standard deviation $S_{\scriptscriptstyle R}$ represents a inter-laboratory estimate of the standard deviation for the determination of each parameter on the bases of (outlier free) individual participant results. It takes into account both the repeatability standard deviation $S_{\rm r}$ and the within-laboratory standard deviation $S_{\rm s}$. Reproducibility standard deviations of PT's may differ from reproducibility standard deviations of ring trials, because the participating laboratories of a PT generally use different internal conditions and methods for determining the measured values.

In the present evaluation, the specification of the reproducibility standard deviation, therefore, does not refer to a specific method, but characterizes approximately the comparability of results between the laboratories, assumed the effect of homogeneity and stability of the sample are negligible.

In case single results from participants are available the calculation of the reproducibility standard deviation S_R is performed by: [3, 4].

The relative reproducibility standard deviation as a percentage of the mean value is indicated as coefficient of variation CV_R in the table of statistical characteristics in the results section in case single results from participants are available. Its meaning is explained in more detail in 3.9.

3.5 Exclusion of results and outliers

Before statistical evaluation obvious blunders, such as those with incorrect units, decimal point errors, and results for a another proficiency test item can be removed from the data set [2]. All results should be given at least with 2 significant digits. Specifying 3 significant digits is usually sufficient.

Results obtained by different analytical methods causing an increased variability and/or a bi- or multimodal distribution of results, are treated separately or could be excluded in case of too few numbers of results. For this results are checked by kernel density estimation [3, 12].

Results are identified as outliers by the use of robust statistics. If a value deviates from the robust mean by more than 3 times the robust standard deviation, it is classified as an outlier [3]. Detected outliers are stated for information only, when z-score are < -2 or > 2. Due to the use of robust statistics outliers are not excluded, provided that no other reasons are present [3].

<u>3.6 Target standard deviation (for proficiency assessment)</u>

The target standard deviation of the assigned value $\sigma_{\rm pt}$ (= standard deviation for proficiency assessment) can be determined according to the following methods.

If an acceptable quotient S^*/σ_{pt} is present, the target standard deviation of the general model by Horwitz is preferably used for the proficiency assessment. It is usually suitable for for evaluation of interlaboratory studies, where different analytical methods are applied by the participants. On the other hand the target standard deviation from the evaluation of precision data of an precision experiment is derived from collaborative studies with specified analytical methods.

In cases where both above-mentioned models are not suitable, the target standard deviation is determined based on values by perception, see under 3.6.3.

For information the z-scores of both models are given in the evaluation, if available.

In the present PT for valuation of <u>vitamin A</u>, <u>vitamin D3 and Vitamin K1</u> the target standard deviation according to the general model of Horwitz was applied (see 3.6.1) and for <u>vitamin E and beta-carotene</u> the target standard deviation according to precision experiments was applied (3.6.2). Wherein the results of beta-carotene were not evaluated by means of z-scores due to the number of < 7.

3.6.1 General model (Horwitz)

Based on statistical characteristics obtained in numerous PTs for different parameters and methods Horwitz has derived a general model for estimating the reproducibility standard deviation $\sigma_{\rm R}$ [6]. Later the model was modified by Thompson for certain concentration ranges [10]. The reproducibility standard deviation $\sigma_{\rm R}$ can be applied as the relative target standard deviation $\sigma_{\rm pt}$ in % of the assigned values and calculated according to the following equations [3]. For this the assigned value $X_{\rm pt}$ is used for the concentration c.

Equations	Range of concentrations	corresponds to
$\sigma_R = 0,22c$	$c < 1, 2 \times 10^{-7}$	< 120 µg/kg
$\sigma_R = 0, 02c^{0,8495}$	$1,2 \times 10^{-7} \le c \le 0,138$	≥ 120 µg/kg
$\sigma_R = 0, 01c^{0, 5}$	c > 0,138	> 13,8 g/100g

with c = mass content of analyte (as relative size, e.g. $1 \text{ mg/kg} = 1 \text{ ppm} = 10^{-6} \text{ kg/kg}$)

3.6.2 Value by precision experiment

Using the reproducibility standard deviation $\sigma_{\rm R}$ and the repeatability standard deviation $\sigma_{\rm r}$ of a precision experiment (collaborative trial or proficiency test) the target standard deviation σ_{pt} can be derived considering the number of replicate measurements m of participants in the present PT [3]:

$$\sigma_{pt} = \sqrt{\sigma_R^2 - \sigma_r^2 \left(m - 1 / m \right)}$$

The values given in Table 3 relative repeatability standard deviation (RSD_r) and relative reproducibility standard deviation (RSD_R) were determined in collaborative trials using the specified methods.

The in the table indicated resulting target standard deviations σ_{pt} were used for evaluation of the results.

For information the target standard deviations according to Horwitz are given additionally.

Parameter	Matrix	Mean values	$\mathtt{RSD}_{\mathtt{r}}$	RSD_{R}	o pt	Method /
						LICETACUTE
Vitamin A	milk powder	653 µg/100 g	2,1%	3,4%	3,06% ¹	HPLC [18]
Vitamin D3	milk powder	14,30 µg/100 g	5 , 2%	5,5%	4,09%	HPLC [16]
	milk powder	9,95 µg/100 g	8,2%	13,6%	12,3% ¹	HPLC [16b]
	infant food, liquid	1,38 µg/100 g	5 , 9%	12,1%	11,4%	HPLC [16]
	infant food, powder	10,1 µg/100 g	2,4%	7,1%	6,89%	HPLC [16]
Vitamin E	oat powder	0,279 mg/100g	9,0%	16,8%	15 , 5%	HPLC [17]
	milk powder	9,89 mg/100 g	4,0%	7,0%	6 , 40%	HPLC [17]
	milk powder	10,2 mg/100 g	3 , 0%	12,8%	12,6% ¹	HPLC [17]
Vitamin K1	6 infant food (mean)	77 , 37 μg/100 g	4,47%	5,91%	4,99% ¹	HPLC [20]
β-Carotene	mixed vegetables	18,05 mg/100g	3,9%	15%	14,7% ¹	HPLC [19]
	pudding powder	1,531 mg/100g	5 , 6%	9,3%	8,42%	HPLC [19]
	vitamin drink	2,248 mg/100g	2,9%	6 , 5%	6 , 17%	HPLC [19]

<u>Table 3:</u> Relative repeatability standard deviations (RSD_r) and relative reproducibility standard deviations (RSD_R) from precision experiments and resulting target standard deviations σ_{pt} [16-20]

¹ used in evaluation (s. chapter 4)

3.6.3 Value by perception

The target standard deviation for proficiency assessment can be set at a value that corresponds to the level of performance that the coordinator would wish laboratories to be able to achieve [3].

For the present evaluation the target standard deviation according to 3.6.1 and 3.6.2 were regarded suitable. Table 4 shows selected characteristics of participants results of the present PT in comparison to previous years.

3.7 z-Score

To assess the results of the participants the z-score is used. It indicates about which multiple of the target standard deviation (σ_{pt}) the result (xi) of the participant is deviating from the assigned value (X_{pt}) [3].

Participants' z-scores are derived from:

$$z_i = \frac{\left(x_i - x_{pt}\right)}{\sigma_{pt}}$$

The requirements for the analytical performance are generally considered as fulfilled if

$-2 \leq z \leq 2$.

The z-score valid for the PT evaluation is designated z-score (σ_{pt}) , while the value of z-score (Info) is for information only. The two z-scores are calculated using the different target standard deviations according to 3.6.

3.7.1 Warning and action signals

In accordance with the norm ISO 13528 it is recommended that a result that gives rise to a z-score above 3,0 or below -3,0, shall be considered to give an "action signal" [3]. Likewise, a z-score above 2,0 or below -2,0 shall be considered to give a "warning signal". A single "action signal", or "warning signal" in two successive PT-rounds, shall be taken as evidence that an anomaly has occurred which requires investigation. For example a fault isolation or a root cause analysis through the examination of transmission error or an error in the calculation, in the trueness and precision must be performed and if necessary appropriate corrective measures should be applied [3].

In the figures of z-scores DLA gives the limits of warning and action signals as yellow and red lines respectively. According to ISO 13528 the signals are valid only in case of a number of \geq 10 results [3].

October 2016

<u>Table 4:</u> Characteristics of the present PT (on dark gray) in comparison to previous PTs since 2012 (SD = standard deviation, CV = coefficient of variation)

Parameter	Matrix	robust Mean	rob. SD (S*)	rel. SD (VK _{s*}) [%]	Quotient S*/opt	DLA- Report
Vitamin A	Multivit- amin-Tablets	13700 µg/100g	1800 µg/100g	13,1%	1,7	DLA 32/2012
Vitamin A	Multivit- amin-Powder	690 μg/100g	180 µg/100g	26 , 1%	2,2	DLA 29/2014
Vitamin A	Multivit- amin-Capsule Powder	21900 µg/100g	2870 µg/100g	13,1%	1,8	DLA 47/2016
Vitamin D3	Multivit- amin-Tablets	180 μg/100g	23 µg/100g	12,8%	0,9	DLA 32/2012
Vitamin D3	Multivit- amin-Powder	28 , 6 µg/100g	11 , 2 µg/100g	39 , 2%	2,0	DLA 29/2014
Vitamin D3	Multivit- amin-Capsule Powder	146 µg/100g	10 , 3 μg/100g	7,05%	0,46	DLA 47/2016
Vitamin E	Multivit- amin-Tablets	355 mg/100g	71 mg/100g	20,0%	1,6	DLA 32/2012
Vitamin E	Multivit- amin-Powder	92 , 7 mg/100g	16 , 3 mg/100g	17,6%	1,4	DLA 29/2014
Vitamin E	Multivit- amin-Capsule Powder	988 mg/100g	211 mg/100g	21,4%	1,7	DLA 47/2016
Vitamin Kl	Multivit- amin-Tablets	715 μg/100g	113 µg/100g	15,8%	1,3	DLA 32/2012
Vitamin Kl	Multivit- amin-Capsule Powder	933 µg/100g	121 µg/100g	13,0%	1,1	DLA 47/2016
β-Carotene	Multivit- amin-Tablets	2,54 mg/100g	0,59 mg/100g	23,2%	2,4	DLA 32/2012
β-Carotene	Multivit- amin-Powder	0,509 mg/100g	0,160 mg/100g	31,4%	2,5	DLA 29/2014
β -Carotene	Multivit- amin-Capsule Powder	32,2 mg/100g	9,70 mg/100g	30,1%	2,0	DLA 47/2016

3.8 z'-Score

The z'-score can be used for the valuation of the results of the participants, in cases the standard uncertainty has to be considered (s. 3.8). The z'-score represents the relation of the deviation of the result (x) of the participant from the respective consensus value (X) to the square root of quadrat sum of the target standard deviation ($\hat{\sigma}$) and the standard uncertainty (Ux_{pt}) [3].

The calculation is performed by:

$$z_i' = \frac{x_i - x_{pt}}{\sqrt{\sigma_{pt}^2 + u_{(x_{pt})}^2}}$$

If carried out an evaluation of the results by means of z 'score, we have defined below the expression in the denominator as a target standard deviation $\sigma_{\rm pt}$ '.

The requirements for the analytical performance are generally considered as fulfilled if

$$-2 \leq z' \leq 2$$
.

For warning and action signals see 3.7.1.

3.9 Reproducibility coefficient of variation (CV_R)

The coefficient of variation (CV_R) of the reproducibility (= relative reproducibility standard deviation) is calculated from the standard deviation and the mean as follows [4, 13]:

$$CV_{R} = \underline{S}_{\underline{R}} \star 100$$

X

In contrast to the standard deviation as a measure of the absolute variability the CV_R gives the relative variability within a data region. While a low CV_R , e.g. <5-10% can be taken as evidence for a homogeneous set of results, a CV_R of more than 50% indicates a "strong inhomogeneity of statistical mass", so that the suitability for certain applications such as the assessment of exceeded maximum values or the performance evaluation of the participants possibly can not be done [3].

<u>3.10 Quotient S^*/σ_{pt} </u>

Following the HorRat-value the results of a proficiency-test (PT) can be considered convincing, if the quotient of robust standard deviation S^* and target standard deviation $\sigma_{\rm pt}$ does not exceed the value of 2. A value > 2 means an insufficient precision, i.e. the analytical method is too variable, or the variation between the test participants is higher than estimated. Thus the comparability of the results is not given [3].

3.11 Standard uncertainty

The consensus value has a standard uncertainty $U(X_{pt})$ that depends on the analytical method, differences between the analytical methods used, the test material, the number of participant laboratories (P) and perhaps on other factors. The standard uncertainty of the assigned value $(U(X_{pt}))$ for this PT is calculated as follows [3]:

$$u_{(x_{pt})} = 1,25 \times \frac{s^*}{\sqrt{p}}$$

If $U(x_{pt}) \leq 0,3 \sigma_{pt}$ the standard uncertainty of the consensus value needs not to be included in the interpretation of the results of the PT [3]. A clear exceeded the value of 0,3 is an indication that the target standard deviation was possibly set too low for the standard uncertainty of the assigned value.

The quotient $u(X_{pt})/\sigma_{pt}$ is reported in the characteristics of the test.

4. Results

All following tables are anonymized. With the delivering of the evaluation-report the participants are informed about their individual evaluation-number.

In the first table the characteristics are listed:

Statistic Data
Number of results
Number of outliers
Mean
Median
Robust mean (X_{pt})
Robust standard deviation (S ^x)
Number with m replicate measurements
Repeatability standard deviation (S_r)
Coefficient of Variation (CV _r)in %
Reproducibility standard deviation (S_R)
Coefficient of Variation (CV_R) in $\%$
Target range:
Target standard deviation σ_{pt} or σ_{pt} '
Target standard deviation for information
lower limit of target range $(X_{pt} - 2\sigma_{pt})$ or $(X_{pt} - 2\sigma_{pt})$ *
upper limit of target range $(X_{pt} + 2\sigma_{pt})$ or $(X_{pt} + 2\sigma_{pt}')$ *
Variation coefficient V_{κ} in %
Quotient S^*/σ_{pt} or S^*/σ_{pt} '
Standard uncertainty $U(X_{pt})$
Quotient $U(X_{pt})/\sigma_{pt}$ or $U(X_{pt})/\sigma_{pt}$ '
Number of results in the target range
Percent in the target range
* Target range is calculated with z-score or z'-score

In the second table the individual results of the participating laboratories are listed:

Auswerte-		Abweichung			Hinweis
nummer	Parameter		z-Score	z-Score	
Evaluation	[Einheit / Unit]	Deviation	σpt	(Info)	Remark
number					

4.1 Vitamin A (as Retinol in µg / 100 g)

<u>Vergleichsuntersuchung</u> / <u>Proficiency Test</u>

Statistic Data	
Number of results	10
Number of outliers	0
Mean	21900
Median	22400
Robust Mean (X)	21900
Robust standard deviation (S*)	2870
Number with 2 replicates	10
Repeatability SD (S_r)	1020
Repeatability (CV _r)	4,65%
Reproducibility SD (S _R)	2640
Reproducibility (CV _R)	12,1%
Target range:	
Target standard deviation σ_{pt}	1560
Target standard deviation (for	669
Information)	
lower limit of target range	18800
upper limit of target range	25000
Quotient S*/opt	1,8
Standard uncertainty U(Xpt)	1130
Quotient U(Xpt)/Opt	0,73
Results in the target range	8
Percent in the target range	80%

Comments to the statistic data:

The target standard deviation was calculated according to the general model of Horwitz.

The evaluation showed a normal variability of results. The quotient S^*/σ_{Pt} was below 2,0. The robust standard deviation is below the range of previous PTs (see 3.6.3). The comparability of results is given.

The repeatability and reproducibility standard deviations were higher than established values for the applied methods (see 3.6.2).

The quotient $U_{(X_{pt})}/\sigma_{pt}$ was 0,73. Although it was not below 0,3 it is acceptable due to the other statistical data and the use of different analytical methods.

80% of results were in the target range.

Abb. 1: Ergebnisse Vitamin A Fig. 1: Results vitamin A

<u>Abb.</u> 2: Kerndichte-Schätzung der Ergebnisse für Vitamin A (mit $h = 1, 0 \ge \sigma_{pt}$ von X_{pt})

Fig. 2: Kernel density plot of vitamin A (with $h = 1, 0 \times \sigma_{pt}$ von Xpt)

Comments:

The kernel density estimation shows almost a normal distribution with a slight shoulder at approximately 18000 $\mu g/100g$ (s. fig. 2).

Ergebnisse der Teilnehmer: Results of Participants:

Auswerte- nummer	Vitamin A [µg/100g]	Abweichung [µg/100g]	z-Score	z-Score	Hinweis
Evaluation number		Deviation [µg/100g]	(σ_{pt})	(Info)	Remark
1	19950	-1926	-1,2	-2,9	
2	22542	666	0,4	1,0	
3	22337	461	0,3	0,7	
4					
5	25044	3168	2,0	4,7	
6	21883	7	0,0	0,0	
7	25016	3140	2,0	4,7	
8	22750	874	0,6	1,3	
9	23270	1394	0,9	2,1	
10	18394	-3482	-2,2	-5,2	
11	17496	-4380	-2,8	-6,5	

Abb. 3: Z-Scores Vitamin A Fig. 3: Z-Scores vitamin A

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 17 of 44

4.2 Vitamin D3 (as Cholecalciferol in µg / 100 g)

Vergleichsuntersuchung / Proficiency Test

Statistic Data	
Number of results	8
Number of outliers	0
Mean	147
Median	146
Robust Mean (X)	146
Robust standard deviation (S*)	10,3
Number with 2 replicates	8
Repeatability SD (S_r)	6,36
Repeatability (CV _r)	4,33%
Reproducibility SD (S _R)	15,3
Reproducibility (CV _R)	10,4%
Target range:	
Target standard deviation σ_{pt}	22,1
Target standard deviation (for	18 0
Information)	10,0
lower limit of target range	102
upper limit of target range	190
Quotient S*/opt	0,46
Standard uncertainty U(Xpt)	4,53
Quotient U(Xpt)/opt	0,21
Results in the target range	8
Percent in the target range	100%

Comments to the statistic data:

The target standard deviation was calculated according to the general model of Horwitz.

The evaluation showed a low variability of results. The quotient S^*/σ_{pt} was clearly below 2,0. The robust standard deviation is below the range of previous PTs (see 3.6.3). The comparability of results is given.

The repeatability and reproducibility standard deviations were in the range of established values for the applied methods (see 3.6.2).

The quotient $U(x_{pt})/\sigma_{pt}$ of 0,21 was below 0,3.

All results were in the target range.

Abb. 4: Ergebnisse Vitamin D3 Fig. 4: Results vitamin D3

<u>Abb.</u> 5: Kerndichte-Schätzung der Ergebnisse für Vitamin D3 (mit $h = 1,0 \ge \sigma_{pt}$ von X_{pt})

Fig. 5: Kernel density plot of vitamin D3 (with $h = 1, 0 \times \sigma_{pt}$ von X_{pt})

<u>Comments:</u>

The kernel density estimation shows a normal distribution of results (s. fig. 5).

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 19 of 44

Ergebnisse der Teilnehmer: Results of Participants:

Auswerte- nummer	Vitamin D3 [µg/100g]	Abweichung [µg/100g]	z-Score	z-Score	Hinweis
Evaluation number		Deviation [µg/100g]	(σ_{pt})	(Info)	Remark
1	142	-4,2	-0,2	-0,2	
2	141	-5,3	-0,2	-0,3	
3	146	-0,2	0,0	0,0	
4					
5	123	-23,1	-1,0	-1,3	
6	146	-0,2	0,0	0,0	
7					
8					
9	149	2,3	0,1	0,1	
10	176	29,3	1,3	1,6	
11	154	7,8	0,4	0,4	

Abb. 6: Z-Scores Vitamin D3 Fig. 6: Z-Scores vitamin D3

4.3 Vitamin E (as D-alpha-Tocopherol in mg / 100 g)

<u>Vergleichsuntersuchung</u> / <u>Proficiency Test</u>

Statistic Data	
Number of results	10
Number of outliers	0
Mean	988
Median	972
Robust Mean (X)	988
Robust standard deviation (S*)	211
Number with 2 replicates	10
Repeatability SD (S _r)	23,4
Repeatability (CV _r)	2,37%
Reproducibility SD (S _R)	187
Reproducibility (CV _R)	18,9%
Target range:	
Target standard deviation σ_{Pt}	125
Target standard deviation (for Information)	39,6
lower limit of target range	738
upper limit of target range	1237
Quotient S*/opt	1,7
Standard uncertainty U(Xpt)	83,5
Quotient U(Xpt)/opt	0,67
Results in the target range	10
Percent in the target range	100%

Comments to the statistic data:

The target standard deviation was calculated according to the evaluation of a precision experiment (ASU / EN s. 3.6.2).

The evaluation showed an acceptable variability of results. The quotient S^*/σ_{Pt} was below 2,0. The robust standard deviation is below the range of previous PTs (see 3.6.3). The comparability of results is given.

The repeatability and reproducibility standard deviations were in the range of established values for the applied methods (see 3.6.2).

The quotient $U_{(Xpt)}/\sigma_{pt}$ was 0,67. Although it was not below 0,3 it is acceptable due to the other statistical data and the use of different analytical methods.

All results were in the target range.

Abb. 7: Ergebnisse Vitamin E Fig. 7: Results vitamin E

<u>Abb.</u> 8: Kerndichte-Schätzungen der Ergebnisse für Vitamin E (links mit $h = 1,0 \times \sigma_{pt}$ von X_{pt} und rechts mit $h = 1,0 \times S^*$ von X_{pt})

Fig. 8: Kernel density plots of vitamin E (left with $h = 1,0 \times \sigma_{pt}$ of X_{pt} and right with $h = 1,0 \times S^*$ of X_{pt})

Comments:

The kernel density estimation shows two maximums when estimated against the target standard deviation. It is passing over into a normal distribution using the robust standard deviation as an estimator (s. fig. 8). The

> Reprint, also in part, only with written permission from DLA-Ahrensburg Page 22 of 44

information on the methods provided by the participants give no obvious indications of such grouping of results (s. documentation).

Ergebnisse der Teilnehmer: Results of Participants:

Auswerte- nummer	Vitamin E [mg/100g]	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number		Deviation [mg/100g]	(σ pt)	(Info)	Remark
1	1170	182	1,5	4,6	
2	1182	194	1,6	4,9	
3	816	-172	-1,4	-4,3	
4					
5	836	-152	-1,2	-3,8	
6	759	-229	-1,8	-5,8	
7	1142	154	1,2	3,9	
8	839	-149	-1,2	-3,8	
9	1105	117	0,9	3,0	
10	820	-168	-1,3	-4,2	
11	1210	222	1,8	5,6	

Abb. 9: Z-Scores Vitamin E Fig. 9: Z-Scores vitamin E

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 23 of 44

4.4 Vitamin K1 (as Phylloquinone in µg / 100 g)

Vergleichsuntersuchung / Proficiency Test

Kenndaten	
Anzahl der Messergebnisse	7
Anzahl der Ausreißer	0
Mittelwert	933
Median	945
Robuster Mittelwert (Xpt)	933
Robuste Standardabweichung (S*)	121
Anzahl mit 2 Wiederholmessungen	7
Wiederholstandardabweichung (S_r)	16,6
Variationskoeffizient (VK _r)	1,78%
Vergleichsstandardabweichung (S _R)	108
Variationskoeffizient (VK _R)	11 , 5%
Zielkenndaten:	
Zielstandardabweichung σ_{Pt}	107
Zielstandardabweichung (zur Information)	46,6
Untere Grenze des Zielbereichs	720
Obere Grenze des Zielbereichs	1150
Quotient S*/opt	1,1
Standardunsicherheit U(Xpt)	57,4
Quotient U(Xpt)/opt	0,54
Ergebnisse im Zielbereich	7
Prozent im Zielbereich	1008

Comments to the statistic data:

The target standard deviation was calculated according to the general model of Horwitz.

The evaluation showed a normal variability of results. The quotient S^*/σ_{Pt} was below 2,0. The robust standard deviation is below the range of previous PTs (see 3.6.3). The comparability of results is given.

The repeatability and reproducibility standard deviations were in the range of established values for the applied methods (see 3.6.2).

The quotient $U(x_{pt})/\sigma_{pt}$ was 0,54. Although it was not below 0,3 it is acceptable due to the other statistical data and the use of different analytical methods.

All results were in the target range.

Abb. 10: Ergebnisse Vitamin K1 Fig. 10: Results vitamin K1

 $\underline{Comments:}$ The kernel density estimation was not calculated due to a number of < 8 results.

Ergebnisse der Teilnehmer: Results of Participants:

Auswerte- nummer	Vitamin K1 [µg/100g]	Abweichung [µg/100g]	z-Score	z-Score	Hinweis
Evaluation number		Deviation [µg/100g]	(σ pt)	(Info)	Remark
1					
2	945	12	0,1	0,3	
3	1005	72	0,7	1,5	
4	781	-152	-1,4	-3,3	
5	922	-11	-0,1	-0,2	
6					
7					
8	1035	102	1,0	2,2	
9					
10	1043	110	1,0	2,4	
11	800	-133	-1,2	-2,9	

Abb. 11: Z-Scores Vitamin K1 Fig. 11: Z-Scores vitamin K1

4.5 beta-Carotene (in mg / 100 g)

Vergleichsuntersuchung / Proficiency Test

Statistic Data					
Number of results	6				
Number of outliers	0				
Mean	32,2				
Median	33,3				
Robust Mean (X)	32,2				
Robust standard deviation (S*)	9,70				
Number with 2 replicates	6				
Repeatability SD (S_r)	0,98				
Repeatability (CV _r)	3,04%				
Reproducibility SD (S _R)	8,58				
Reproducibility (CV _R)	26 , 6%				
Target range:					
Target standard deviation σ_{pt}	4,75				
Target standard deviation (for	2 16				
Information)	2,10				
lower limit of target range	-				
upper limit of target range	-				
Quotient S*/opt	2,0				
Standard uncertainty U(Xpt)	4,9				
Quotient U(Xpt)/opt	1,0				
Results in the target range	-				
Percent in the target range	-				

Comments to the statistic data:

A valuation of results using z-scores was not performed due to the small number of results of < 7. The following comments are for information only:

The target standard deviation was calculated according to the evaluation of a precision experiment (ASU / EN s. 3.6.2).

The evaluation showed an acceptable variability of results. The quotient S^*/σ_{Pt} was 2,0. The robust standard deviation is in the range of previous PTs (see 3.6.3). The repeatability and reproducibility standard deviations were in the range of established values for the applied methods (see 3.6.2). The quotient $U(x_{\text{Pt}})/\sigma_{\text{Pt}}$ of 1,0 was increased.

Abb. 12: Ergebnisse β -Carotin Fig. 12: Results β -carotene

Comments:

The kernel density estimation was not calculated due to a number of $\,<\,8$ results.

Ergebnisse der Teilnehmer: Results of Participants:

Auswerte- nummer	β-Carotin / β- Carotene	Abweichung [mg/100g]	z-Score	z-Score	Hinweis
Evaluation number	[mg/100g]	Deviation [mg/100g]	(σ_{pt})	(Info)	Remark
1	33,1	0,9			
2	43,8	11,6			
3	23,7	-8,5			
4					
5					
6					
7	21,1	-11,1			
8					
9	33,5	1,3			
10					
11	38,0	5,8			

5. Documentation

5.1 Primary data

Parameter	Teilnehmer	Einheit	Proben-Nr. A	Proben-Nr. B	Datum d.	Ergebnis (Mittel)	Ergebnis A	Ergebnis B	Bestim-	Inkl. WF	Wiederfin-
					Analyse				mungsgren-		dungsrate
Analyte	Participant	Unit	Sample No. A	Sample No. B	Date of analysis	Result (Mean)	Result A	Result B	Limit of de- termination	Incl. RR	Recovery rate [%]
	1	µg/100g	19	55	Jul 16	19950	20200	19700	4500	no	n/a
	2	µg/100g	4	16	16-08-08	22541,68	21736,63	23346,73	1,9	no	103,9
	3	µg/100g	29	46	16-07-19	22336,75	23154,75	21518,74	5	no	
Vitamin A	4	µg/100g	5	38	n/a						
ohne	5	µg/100g	7	36	16-06-30	25044,08	26647,12	23441,03	3090	no	-
Provitamine /	6	µg/100g	10	21	16-06-22	21883	22023	21743	9	na	na
as retinol	7	µg/100g	42	60	Jul 16-21	25016,15	24491,66	25540,64	60	yes	102,47
w ithout	8	µg/100g	44	48	16-07-04	22750	22700	22800	3000	no	-
provitarinis)	9	µg/100g	13	25	16-07-06	23270	23470	23070		no	97,8
	10	µg/100g	34	51		18394,24	18190,3	18598,17		no	
	11	µg/100g	27	53	16-08-08	17496	16579	18413	N/A	NO	N/A

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 29 of 44

Parameter	Teilnehmer	Einheit	Proben-Nr. A	Proben-Nr. B	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis A	Ergebnis B	Bestim- mungsgren-	Inkl. WF	Wiederfin- dungsrate
Analyte	Participant	Unit	Sample No. A	Sample No. B	Date of analysis	Result (Mean)	Result A	Result B	ze Limit of de- termination	Incl. RR	[%] Recovery rate [%]
	1	µg/100g	19	55	Jul 16	142	136	147	75	no	n/a
	2	µg/100g	4	16	16-08-12	140,93	143,21	138,65	20	no	100,7
	3	µg/100g	29	46	16-07-19	146,07	148,93	143,2	0,01	no	
Vitamin D2	4	µg/100g	5	38	n/a						
(als Cholecal-	5	µg/100g	7	36	16-06-30	123,19	126,96	119,42	16	no	-
ciferol / as	6	µg/100g	10	21	16-07-13	146	140	152	10	na	na
cholecalcife-	7	µg/100g	42	60							
roi)	8	µg/100g	44	48	16-07-04	< LOQ	< LOQ	< LOQ	400	no	-
	9	µg/100g	13	25	16-07-15	148,5	142,9	154,1			
	10	µg/100g	34	51		175,56	170,04	181,07		no	
	11	µg/100g	27	53	16-08-09	154	156	151	N/A	NO	N/A

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 30 of 44

Parameter	Teilnehmer	Einheit	Proben-Nr. A	Proben-Nr. B	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis A	Ergebnis B	Bestim- mungsgren-	Inkl. WF	Wiederfin- dungsrate
									ze		[%]
Analyte	Participant	Unit	Sample No. A	Sample No. B	Date of	Result (Mean)	Result A	Result B	Limit of de-	Incl. RR	Recovery
					analysis				termination		rate [%]
	1	mg/100g	19	55	Jul 16	1170	1200	1140	1000	no	n/a
	2	mg/100g	4	16	16-07-26	1181,72	1185,85	1177,58	149	no	101,3
	3	mg/100g	29	46	16-07-19	816,22	817,22	815,21	0,5	no	
	4	mg/100g	5	38	n/a						
(als D-q-To-	5	mg/100g	7	36	16-06-30	835,69	807,23	864,15	100	no	-
copherol / as	6	mg/100g	10	21	16-06-22	759	784	734	215	na	na
d-α-tocophe-	7	mg/100g	42	60	Jul 16-21	1141,54	1144,89	1138,19	0,35	yes	94,21
roi)	8	mg/100g	44	48	16-07-04	839	827	850	63	no	-
	9	mg/100g	13	25	16-07-06	1105	1112	1098		no	99,2
	10	mg/100g	34	51		820,31	826,63	813,99		no	
	11	mg/100g	27	53	16-07-07	1210	1198	1222	N/A	NO	N/A

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 31 of 44

Parameter	Teilnehmer	Einheit	Proben-Nr. A	Proben-Nr. B	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis A	Ergebnis B	Bestim- mungsgren-	Inkl. WF	Wiederfin- dungsrate
Analita	Participant	Unit	Sample No. A	Sample No. P	Data of	Pocult (Moon)	Bocult A	Pocult P	Ze Limit of do	Incl DD	[%]
Analyte	Farticipant	Onit	Sample No. A	Sample No. B	analysis	Result (Weall)	Result A	Result B	termination		rate [%]
	1	µg/100g	19	55	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	2	µg/100g	4	16	16-07-28	945,16	934	956,32	250	no	91,8
	3	µg/100g	29	46	16-07-19	1005,22	1015,46	994,98	0,1	no	
	4	µg/100g	5	38	16-08-05	780,85	799,85	761,85	5.4 µg/100g	no	n/a
Vitamin K1	5	µg/100g	7	36	16-06-30	922,47	929,02	915,93	495	no	-
(als Phylioqui-	6	µg/100g	10	21							
loquinone)	7	µg/100g	42	60							
	8	µg/100g	44	48	16-07-04	1035	1020	1050	800	no	-
	9	µg/100g	13	25							
	10	µg/100g	34	51		1042,89	1052,84	1032,94		no	
	11	µg/100g	27	53	16-07-07	800	797	804	N/A	NO	N/A

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 32 of 44

Parameter	Teilnehmer	Einheit	Proben-Nr. A	Proben-Nr. B	Datum d. Analyse	Ergebnis (Mittel)	Ergebnis A	Ergebnis B	Bestim- mungsgren- ze	Inkl. WF	Wiederfin- dungsrate [%]
Analyte	Participant	Unit	Sample No. A	Sample No. B	Date of analysis	Result (Mean)	Result A	Result B	Limit of de- termination	Incl. RR	Recovery rate [%]
	1	mg/100g	19	55	Jul 16	33,1	33,3	32,9	0,01	no	n/a
	2	mg/100g	4	16	16-07-13	43,83	43,31	44,35	0,08	no	99,3
	3	mg/100g	29	46	16-07-20	23,73	22,67	24,78	0,01	no	
	4	mg/100g	5	38	n/a						
ohne andere	5	mg/100g	7	36	-	-	-	-	-	-	-
Provitamine /	6	mg/100g	10	21							
as β-carotene,	7	mg/100g	42	60	Jun 22-23	21,13	21,58	20,68	3	yes	127,73
without other	8	mg/100g	44	48		-	-	-	-		
provitamins)	9	mg/100g	13	25	16-07-13	33,5	34	33		no	98,5
	10	mg/100g	34	51							
	11	mg/100g	27	53	16-08-02	38	39	37	N/A	NO	N/A

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 33 of 44

5.2 Homogeneity

5.2.1 Homogeneity of bottled PT-samples

Homogeneity test of niacin by HPLC-UV:

mg/100g
16,2
16,3
16,3
16,1
16,3
16,0
16,3
16,4

Mean	16,2	
Repeatability Standard Deviation	0,130	0,80%

5.2.2 Comparison of sample numbers / test results and trend line

By comparison of the increasing sample numbers and the measurement results of participants, the homogeneity of the chronological bottled PT item can be characterized with the help of the trend line function:

Vitamin A	without	partic	cipants	5	+ 11*
Target standard deviation σ_{pt}	1556				µg/100g
Sample numbers	4 - 60				
Total numbers of samples	16				
Slope	27,0				
Trend line range	21815	-	22247		µg/100g
Deviation trend line	22031	±	216		µg/100g
Percent of opt	13,9	olo			

* lowest and highest results respectively

Abb. 13: Trendfunktion Probennummern / Vitamin A Ergebnisse (1/1000 dargestellt)

Vitamin E				
Target standard deviation σ_{Pt}	125			mg/100g
Sample numbers	4 - 60			
Total numbers of samples	20			
Slope	0,206			
Trend line range	986	-	990	mg/100g
Deviation trend line	988	±	2,00	mg/100g
Percent of opt	1,6	olo		

- Abb. 14: Trendfunktion Probennummern / Vitamin E Ergebnisse (:100 dargestellt)

5.3 Analytical Methods

Details by the participants

Parameter	Teilnehmer	Methodenbeschreibung	Wiederfindung mit gleicher Matrix	Methode akkre- ditiert	Sonstige Hinweise
Analyte	Participant	Method description	Recovery with same matrix	Method accredi- ted	Further remarks
	1	HPLC	no	no	
	2	PV 2.020/002-03	yes	yes	
	3	HPLC (SOP M840)	no	yes	
	4				
	5	HPLC-DAD	no	no	-
Vitamin A (als Retinol	6	UPLC-DAD	n.a.	yes	
retinol without	7	ASU L 49.00-3, HPLC-DAD	yes	yes	
provitamins)	8	HPLC-DAD	-	yes	
	9	Vitamin A and E; Determination in food and food supplements by HPLC according to ASU §64 method, modified saponification temperature	yes	yes	
	10		no	yes	
	11	RP-HPLC	NO	YES	

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 37 of 44

Parameter	Teilnehmer	Methodenbeschreibung	Wiederfindung mit gleicher Matrix	Methode akkre- ditiert	Sonstige Hinweise
Analyte	Participant	Method description	Recovery with same matrix	Method accredi- ted	Further remarks
	1	HPLC	no	yes	
	2	PV 2.020/004-03	yes	yes	
	3	LC-MS/MS (SOP M2885)	no	no	
	4				
Vitamin D3 (als Cho-	5	HPLC-DAD	no	no	-
lecalciferol / as cholecal-	6	UPLC-MS/MS	no	yes	
ciferol)	7				
	8	HPLC-DAD	-	yes	
	9	LC/MS/MS		no	
	10		no	yes	
	11	NP-HPLC	no	yes	

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 38 of 44

Parameter	Teilnehmer	Methodenbeschreibung	Wiederfindung mit gleicher Matrix	Methode akkre- ditiert	Sonstige Hinweise
Analyte	Participant	Method description	Recovery with same matrix	Method accredi- ted	Further remarks
	1	HPLC	no	yes	
	2	PV 2.020/003-03	yes	yes	
	3	HPLC (SOP M840)	no	yes	
Vitamin E (als D-α-	4				
	5	HPLC-DAD	no	no	-
	6	UPLC-DAD	no	yes	
Tocopherol / as d-α-to-	7	ASU L 49.00-5, HPLC-DAD	yes	yes	
copherol)	8	HPLC-DAD	-	yes	
	9	Vitamin A and E; Determination in food and food supplements by HPLC according to ASU §64 me- thod, modified saponification temperature	yes	yes	
	10		no	yes	
	11	RP-HPLC	no	yes	

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 39 of 44

Parameter	Teilnehmer	Methodenbeschreibung	Wiederfindung mit gleicher Matrix	Methode akkre- ditiert	Sonstige Hinweise
Analyte	Participant	Method description	Recovery with same matrix	Method accredi- ted	Further remarks
	1	n/a	n/a	n/a	
	2	PV 2.019/019-01	yes	yes	
	3	HPLC (SOP M2986)	no	yes	
Vitamin K1 (als Phyl- loquinone / as phylloqui-	4	Based on BS EN14148:2003, after enzymatic removal of fat from the sample vitamin K1 is determined in an appropriate sample solution by HPLC separation coupled with post column reduction and subsequent fluorometric detection. Vitamin K1 isomers are quantified as a single unresolved peak with a C18 column	no	yes	method is accredited for infant formula, controls used was IF. Sample results were outside our working range, samples were diluted and re-injected.
	5	HPLC-DAD	no	no	-
	6				
	7				
	8	HPLC-DAD	-	yes	
	9				
	10		no	yes	
	11	RP-HPLC	no	no	

Parameter	Teilnehmer	Methodenbeschreibung	Wiederfindung mit gleicher Matrix	Methode akkre- ditiert	Sonstige Hinweise
Analyte	Participant	Method description	Recovery with same matrix	Method accredi- ted	Further remarks
	1	HPLC	yes	yes	
	2	PV 2.019/012-03	yes	yes	
	3	HPLC (SOP M932)	no	yes	
	4				
β-Carotene (als β-	5	-	-	-	-
Carotin, <u>ohne andere</u>	6				
tene	7	LAV 21.0055-02, HPLC-DAD	yes	yes	
without other provit-	8				
amins)	9	Photometric determination of total carotinoides and beta-carotenes in food and food supplements	yes	yes	within june 13 th and june 28 th analysed values showed a decreasing tendency
	10				
	11	RP-HPLC	no	yes	

<u>Reprint, also in part, only with written permission from DLA-Ahrensburg</u> Page 41 of 44

6. Index of participant laboratories in alphabetical order

Teilnehmer / Participant	Ort / Town	Land / Country
		UNITED KINGDOM
		Germany
		Germany
		Germany
		IRELAND
		Germany
		Germany
		Germany
		USA
		SWEDEN
		Germany

[Die Adressdaten der Teilnehmer wurden für die allgemeine Veröffentlichung des Auswerte-Berichts nicht angegeben.]

[The address data of the participants were deleted for publication of the evaluation report.]

Reprint, also in part, only with written permission from DLA-Ahrensburg Page 42 of 44

7. Index of references

- 1. DIN EN ISO/IEC 17025:2005; Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien / General requirements for the competence of testing and calibration laboratories
- 2. DIN EN ISO/IEC 17043:2010; Konformitätsbewertung Allgemeine Anforderungen an Eignungsprüfungen / Conformity assessment - General requirements for proficiency testing
- 3. ISO 13528:2015 & DIN ISO 13528:2009; Statistische Verfahren für Eignungsprüfungen durch Ringversuche / Statistical methods for use in proficiency testing by interlaboratory comparisons
- 4. ASU §64 LFGB: Planung und statistische Auswertung von Ringversuchen zur Methodenvalidierung / DIN ISO 5725 series part 1, 2 and 6 Accuracy (trueness and precision) of measurement methods and results
- 5. Verordnung / Regulation 882/2004/EU; Verordnung über über amtliche Kontrollen zur Überprüfung der Einhaltung des Lebensmittel- und Futtermittelrechts sowie der Bestimmungen über Tiergesundheit und Tierschutz / Regulation on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules
- 6. Evaluation of analytical methods used for regulation of food and drugs; W. Horwitz; Analytical Chemistry, 54, 67-76 (1982)
- 7. The International Harmonised Protocol for the Proficiency Testing of Ananlytical Laboratories ; J.AOAC Int., 76(4), 926 - 940 (1993)
- 8. A Horwitz-like funktion describes precision in proficiency test; M. Thompson, P.J. Lowthian; Analyst, 120, 271-272 (1995)
 9. Protocol for the design, conduct and interpretation of method performance
- studies; W. Horwitz; Pure & Applied Chemistry, 67, 331-343 (1995)
- 10.Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing; M. Thompson; Analyst, 125, 385-386 (2000)
- 11. The International Harmonised Protocol for the Proficiency Testing of Analytical Chemistry Laboratories; Pure Appl Chem, 78, 145 - 196 (2006)
- 12.AMC Kernel Density Representing data distributions with kernel density estimates, amc technical brief, Editor M Thompson, Analytical Methods Committee, AMCTB No 4, Revised March 2006 and Excel Add-in Kernel.xla 1.0e by Royal Society of Chemistry
- 13.EURACHEM/CITAC Leitfaden, Ermittlung der Messunsicherheit bei analytischen Messungen (2003); Quantifying Uncertainty in Analytical Measurement (1999)
- 14.GMP+ Feed Certification scheme, Module: Feed Safety Assurance, chapter 5.7 Checking procedure for the process accuracy of compound feed with micro tracers in GMP+ BA2 Control of residues, Version: 1st of January 2015 GMP+ International B.V.
- 15.MTSE SOP No. 010.01 (2014): Quantitative measurement of mixing uniformity and carry-over in powder mixtures with the rotary detector technique, MTSE Micro Tracers Services Europe GmbH
- 16.ASU § 64 LFGB L 00.00-61 / DIN EN 12821:2009 [16b: 2000]: Bestimmung von Vitamin D (Cholecalciferol (D_3) und Ergocalciferol (D_2)) in Lebensmitteln mittels HPLC / Foodstuffs. Determination of vitamin D by high performance liquid chromatography. Measurement of cholecalciferol (D3) or ergocalciferol (D2)
- 17.ASU § 64 LFGB L 00.00-62 / DIN EN 12822:2014: Bestimmung von Vitamin E $(\alpha -, \beta -, \gamma - \text{ und } \delta - \text{Tocopherol})$ in Lebensmitteln mittels HPLC / Foodstuffs. Determination of vitamin E by high performance liquid chromatography. Measurement of α -, β -, γ - and δ -tocopherol
- 18.ASU § 64 LFGB L 00.00-63/1 / DIN EN 12823-1:2014: Bestimmung von Vitamin A in Lebensmitteln mittels HPLC, Teil 1: Bestimmung von all-trans-Retinol und 13-cis-Retinol / Foodstuffs. Determination of vitamin A by high performance liquid chromatography. Measurement of all-E-retinol and 13-Z-retinol
- 19.ASU § 64 LFGB L 00.00-63/2 / DIN EN 12823-2:2000: Bestimmung von Vitamin A in Lebensmitteln mittels HPLC, Teil 2: Bestimmung von β -Carotin / Food-

stuffs. Determination of vitamin A by high performance liquid chromatography. Measurement of $\beta\mbox{-}car\mbox{otene}$

- 20.ASU § 64 LFGB L 00.00-86 / DIN EN 14148:2003: Untersuchung von Lebensmitteln Bestimmung von Vitamin K_1 mit HPLC / Foodstuffs. Determination of vitamin K1 by HPLC
- 21.EN 15652:2009; Untersuchung von Lebensmitteln: Bestimmung von Niacin mit HPLC / Foodstuffs. Determination of niacin by HPLC
- 22.Ministry of Health and Welfare, JSM, Japan 2006

23.Blake CJ (2007), Analytical procedures for water-soluble vitamins in foods and dietary supplements: a review. Anal Bioanal Chem 389(1):63-76

24.Blake CJ (2007) Status of methodology for the determination of fat-soluble vitamins in foods, dietary supplements, and vitamin premixes. J AOAC Int 90(4):897-910